On the family of cubic parabolic polynomials
نویسندگان
چکیده
For a sequence \begin{document}$ (a_n) $\end{document} of complex numbers we consider the cubic parabolic polynomials f_n(z) = z^3+a_n z^2+z and (F_n) iterates F_n f_n\circ\dots\circ f_1 . The Fatou set \mathcal{F}_0 is all z\in\hat{\mathbb{C}} such that normal. complement called Julia denoted by \mathcal{J}_0 aim this paper to study some properties As particular case, when constant, a_n , then iteration becomes classical f^n where f(z) z^3+a connectedness locus, M a\in\mathbb{C} connected. In investigate symmetric as well.
منابع مشابه
The Geometry of Cubic Polynomials
Given a complex cubic polynomial p(z) = (z − 1)(z − r1)(z − r2) with |r1| = 1 = |r2|, where are the critical points? Marden’s Theorem tells us that the critical points are the foci of the Steiner ellipse of 41r1r2. In this paper we further explore the structure of these critical points. If we let Tγ be the circle of diameter γ passing through 1 and 1 − γ, then there are α, β ∈ [0, 2] such that ...
متن کاملA Family of Cubic Rational Maps and Matings of Cubic Polynomials
Introduction 1. Preliminaries 2. Statement of the Results and Examples 3. General Analysis on Branched Coverings and Matings 4. Proof of the Results: First Part 5. Proof of the Results: Second Part Appendix: Matings Seen in Parameter Space and Some Numerical Observations Acknowledgements References We study a family of cubic branched coverings and matings of cubic polynomials of the form g?? f,...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولGeometry of Cubic Polynomials
Imagine a sphere with its equator inscribed in an equilateral triangle. This Saturn-like figure will help us understand from where Cardano’s formula for finding the roots of a cubic polynomial p(z) comes. It will also help us find a new proof of Marden’s theorem, the surprising result that the roots of the derivative p(z) are the foci of the ellipse inscribed in and tangent to the midpoints of ...
متن کاملOn Dynamics of Cubic Siegel Polynomials
Let f be a polynomial of degree d ≥ 2 in the complex plane and consider the following statements: (A d) " If f has a fixed Siegel disk ∆ of bounded type rotation number, then ∂∆ is a quasicircle passing through some critical point of f. " (B d) " If f has a fixed Siegel disk ∆ such that ∂∆ is a quasicircle passing through some critical point of f , then the rotation number of ∆ is bounded type....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2021
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2021121